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ABSTRACT

To increase the generative capacity of context-free (CF, for short) grammars, Čulik and Maurer
(see [1]) have published an idea of regular restricting the levels in the derivation trees of CF
grammars. A simple and natural question is what happens if we put the same request not
on the levels, but on the paths of derivation trees of CF grammars. In contrast with regular
restricting the levels, regular restricting the paths does not increase the generative capacity of
CF grammars. This paper formulates a formal proof.

1 INTRODUCTION

Chomsky has established a hierarchy in the classical theory of formal languages. One of
the classes of the hierarchy is the class of CF languages. Parsing of this class of languages
is, in contrast with the languages of higher classes, strongly sophisticated and common used
e.g. in compilers. Natural request is to somehow increase the generative capacity of CF gram-
mars and thus obtain languages from the higher class and simultaneously facilitate the usage of
parsing methods for CF languages. Several types of controlling CF grammars have been de-
veloped, controlling the derivation tree among others. Čulik and Maurer in [1] have published
the result that regular restrictions on the levels in the derivation tree of CF grammar increases
the generative capacity of CF grammars. Marcus, Martín-Vide, Mitrana and Păun in [2] have
published an idea of regular restricting a path in derivation tree of CF grammars and they have
showed that such formalism does not increase the generative capacity of CF grammars. In con-
clusion of their paper (see [2]) they have formulated the question what happens if we require to
have all the paths from a derivation tree described by a regular language. In this paper we will
formulate the proof that regular restricting all the paths in the derivation trees of CF grammars
does not increase the generative capacity of CF grammars.

2 PRELIMINARIES AND DEFINITIONS

This paper assumes that the reader is familiar with the theory of formal languages. The items
that are not defined explicitly are standard in the theory of formal languages (see [3]). In this
section, we will briefly review essential definitions required in the sequel.



Definition 1 Let Σ be an alphabet. The regular expressions (RE, for short) over Σ and the lan-
guages they denote are defined as follows: /0 is an RE denoting the empty set; ε is an RE
denoting {ε}; a ∈ Σ is an RE denoting {a}; let r and s be regular expressions denoting the lan-
guages Lr and Ls, respectively, then: (r.s) is an RE denoting L = LrLs; (r+ s) is an RE denoting
L = Lr∪Ls; (r∗) is an RE denoting L = Lr

∗.
A language L is a regular language if there exists a regular expression r that denotes L, and
the class of all languages generated by RE is denoted L(REG).

Definition 2 A context-free grammar is a quadruple G = (N,T,P,S), where: N is an alphabet
of nonterminals; T is an alphabet of terminals, N ∩T = /0; P is a finite set of pairs (A,x),A ∈
N,x ∈ (N ∪T )∗, each such a pair p = (A,x) is called a production rule and usually written as
A→ x; S ∈ N is the start nonterminal.
Let u,v ∈ (N ∪ T )∗ and p = A → x ∈ P. Then uAv directly derives uxv according to p in G,
written as uAv ⇒ uxv[p], and the reflexive, transitive closure of the relation ⇒ is denoted by
⇒∗. The language generated by G is denoted by L(G) and defined by L(G) = {x ∈ Σ∗|S⇒∗ x}.

The sequel will deal with the restrictions on the derivation trees of CF grammars and the fol-
lowing definitions are required.

Definition 3 A derivation tree for a grammar G = (N,T,P,S) is a tree where: the root is the
start nonterminal of G; the interior nodes are the nonterminals of G; the leaf nodes are the ter-
minal symbols of G; the sons of a node T (from left to right) correspond to the symbols on
the right hand side of some production for T in P.
Notation: Let 4 denotes a derivation tree and let f rontier(4) be a function that returns
the word obtained by concatenating all leaves of 4 from left to right. Let 4(x) denotes
the derivation tree 4, such that f rontier(4) = x, and let H4(x) denotes the derivation tree
4 with respect to the grammar H, such that f rontier(4) = x. Let root(4) be a function that
returns the root node of 4. Let dist(x) be a function that returns the length of the path between
root(4) and the node x.

Definition 4 Let G = (N,T,P,S) be a CF grammar and let r : A→ B1B2 . . .Bn ∈ P, A ∈ N,Bi ∈
(N ∪T ), for i = 1 . . .n, is a production rule. Then the rule tree that corresponds to the rule r
is the derivation tree 4, such that f rontier(4) = B1B2 . . .Bn, for i = 1 . . .n, root(4) = A and
each node labeled by Bi is a son of the node A.

Definition 5 Let 4 be a derivation tree of a grammar G and M be a finite automata. Enriched
derivation tree, denoted by 4, is 4 with edges associated to the states of finite automata M.
Let 4(x) and H4(x) be defined analogically with respect to the Notation in Definition 3.

Definition 6 Let S(H4(x)) denotes the set of all derivation trees, such that f rontier(4) = x,
with respect to grammar H. Let S(H4(x)) denotes the set of all enriched derivation trees, such
that f rontier(4) = x, with respect to grammar H.

Definition 7 Let 4 be a derivation tree. Every sequence s of nodes, s = a1a2 . . .ai, i = 1 . . . i,
such that for each two nodes ai,a j, i 6= j,dist(ai) = dist(a j), i, j = 1 . . .n is called the level of
4. Let level(s) be a function that returns the word obtained by concatenating all symbols in s.



The idea of controlling the levels of the derivation trees of CF grammars was introduced by
Čulik and Maurer in [1] as follows.

Definition 8 CF grammar with regular controlling the levels in the derivation trees (CFRCL,
for short) is a pair (G,R), where G = (N,T,P,S) is a CF grammar and R ⊆ (N ∪ T )∗ is a
regular language. The language generated by (G,R) is denoted by L(G,R) and defined by
L(G,R) = {x ∈ L(G)| there exists 4(x) such that for each level s (except the last one) it holds
that level(s) ∈ R}. The class of all languages generated by CFRCL is denoted as L(CFRCL).

A simple and natural extension of the idea of CFRCL grammars is the CF grammar with regular
controlling the paths in its derivation tree.

Definition 9 Let 4 be a derivation tree. Every sequence s of nodes, s = a1a2 . . .ai, i = 1 . . .n ,
such that a1 = root(4), an is a leaf of 4 and for each i = 1 . . .n−1 there exists an edge from
ai to ai+1 in 4, is called path in 4. Let path(s) be a function that returns the word obtained by
concatentating all symbols in s.

Definition 10 CF grammar with regular controlling the paths in the derivation trees (CFRCP,
for short) is a pair (G,R), where G = (N,T,P,S) is a CF grammar and R ⊆ (N ∪ T )∗ is a
regular language. The language generated by (G,R) is denoted by L(G,R) and defined by
L(G,R) = {x ∈ L(G)| there exists 4(x) such that for each path s it holds that path(s) ∈ R}.
The class of all languages generated by CFRCP is denoted as L(CFRCP).

3 MAIN RESULT

Čulik and Maurer in [1] have proved that the CFRCL grammars can generate all the laguages
of type 0 of the Chomsky hierarchy, thus CFRCL grammars have the generative capacity equal
to Turing machines. One could expected that a simple and natural extension of their concept
in the form of regular controlling the paths in the derivation trees will also increase genera-
tive capacity and it would be interesting to study the relationship between language classes
L(CFRCL) and L(CFRCP). However, the result is in contrast to the expectations.

In this section we will examine the generative capacity of CFRCP grammars and we will show
that regular controlling the paths in the derivation trees of CF grammars do not increase gene-
rative capacity of CF grammar. We will formulate the formal proof of this claim based on
an algorithm that for each CFRCP grammar (G,R) finds CF grammar H, such that L(G,R) =
L(H).

Algorithm 1 Transform CFRCP (G,R) to CF H. Let (G,R) be a CFRCP grammar, where G =
(NG,T,PG,SG) and R is a regular language. Without any loss of generality, we can assume that
there exists deterministic finite automata M = (QM,NG∪T,RM,sM,FM), such that L(M) = R.
Let H = (NH ,T,PH ,SH) be a CF grammar, defined by the following algorithm:

– For each p : A → B1B2 . . .Bn ∈ PG :

– If qA → qA ∈ RM, for any q ∈ QM, and it holds that qABi → qBi ∈ RM, for each
i, i = 1,2, . . . ,n, then



– Add 〈A,qA〉 to NH and if A = SG and q = sM, then 〈A,qA〉= SH

– For each j, j = 1,2, . . . ,n:
– Add 〈B j,qB j〉 to NH and if it holds that B j ∈ T and qB j ∈ FM, then add
〈B j,qB j〉 → B j to PH

– Add 〈A,qA〉 → 〈B1,qB1〉〈B2,qB2〉 . . .〈Bn,qBn〉 to PH

Lemma 1 There exists t ∈ S((G,R)4(x)),x∈ (NG∪T )∗, if and only if there exists d ∈ S(H4(y)),
y = 〈B1,qB1〉〈B2,qB2〉 . . .〈Bn,qBn〉 ∈ N∗

H ,n≥ 0, such that t ∼= d and x = B1B2 . . .Bn.

Proof: Let g be a bijection on S((G,R)4(B1B2 . . .Bn)),Bi ∈ (N∪T ), and S(H4(〈B1,qB1〉〈B2,qB2〉
. . .〈Bn,qBn〉)),〈Bn,qBn〉 ∈NH , for each n≥ 0, defined by: For each node A 6= root(t) and an edge
q, such that q′A → q ∈ RM, for any q′ ∈ QM, it holds g(A) = 〈A,q〉, where 〈A,q〉 is a node in
d. For SG = root(t) it holds g(SG) = 〈SG,qSG〉, where sMSG → qSG ∈ RM and 〈A,q〉 is the root
node of d. For each edge q(A,B), where A,B are nodes in t, it holds g(q(A,B)) = q′(g(A),g(B))
is an edge in d. Let g−1 be inverse of g.

⇒: This is established by induction on the number of the rule trees in t ∈ S((G,R)4(x)),x ∈
(NG∪T )∗.
Basis: Let i = 0. The only rule tree in t is SG, the node which corresponds to the start nonter-
minal of (G,R). Clearly the only rule tree in d is g(SG), the node which corresponds to the start
nonterminal of H.
IH: Let us suppose that our claim holds for any enriched derivation tree t ∈ S((G,R)4(x)),x ∈
(NG∪T )∗, that contains at most k, for some k ≥ 0, rule trees.
IS: Let t ∈ S((G,R)4(x)),x ∈ (NG ∪ T )∗, be any enriched derivation tree that contains k + 1
rule trees. Let x = uvw, where u,v,w ∈ (N ∪T )∗, and let t contains an enriched subtree 4(v)
such that all its nodes (except the root(4(v))) are leaves. Let us remove just one rule tree
from t that is if root(4(v)) = B, then 4(uBv), where u and w are prefix and suffix of x, re-
spectively, and B → v ∈ PG, is a subtree of t. Thus, by induction hypothesis, g(4(uBv)) is a
subtree of d and, by Algorithm 1, f rontier(g(4(uBv))) = u′〈B,q〉w′, where 〈B,q〉 ∈ NH and
u′,w′ ∈ (NH ∪ T )∗. Because for each Bi in v there exists qBBi → qBi ∈ RM, then there exists
the rule r : 〈B,q〉 → 〈B1,qB1〉〈B2,qB2〉 . . .〈Bn,qBn〉 ∈ PH , where B1B2 . . .Bn = v, and we can
generate d =4(u′〈B1,qB1〉〈B2,qB2〉 . . .〈Bn,qBn〉w′) such that g(t) = d.

⇐: This is established by induction on the number of the rule trees in d ∈ S(H4(y)),y =
〈B1,qB1〉〈B2,qB2〉 . . .〈Bn,qBn〉 ∈ N∗

H ,n≥ 0.
Basis: Let i = 0. The only rule tree in d is 〈SG,qSG〉, the node that corresponds to the start
nontermnal of H. The only rule tree in t is g−1(SG,qSG), the node that corresponds to the start
nonterminal of (G,R).
IH: Let us suppose that our claim holds for any derivation tree d ∈ S(H4(y)),y = 〈B1,qB1〉〈B2,qB2〉
. . .〈Bn,qBn〉 ∈ N∗

H ,n≥ 0, that contains at most k, for some k ≥ 0, rule trees.
IS: Let d ∈ S(H4(y)),y = 〈B1,qB1〉〈B2,qB2〉 . . .〈Bn,qBn〉 ∈N∗

H ,n≥ 0, be any derivation tree that
contains k + 1 rule trees. Let y = uvw, where u,v,w ∈ N∗

H , and let d contains a subtree 4(v)
such that all its nodes (except the root(4(v))) are leaves. Let us remove jus one rule tree from
d that is if root(4(v)) = 〈B,q〉, then 4(u′〈B,q〉v′), where v′ and w′ are prefix and suffix of y,
respectively, and 〈B,q〉 → v ∈ PH , is a subtree of d. Thus, by induction hypothesis, there exists



a subtree t ′ of t such that g(t ′) = 4(u′〈B,q〉v′). Let f rontier(t ′) = uBv, where B ∈ NG and
u,w ∈ (NG∪T )∗. Because r : 〈B,q〉 → v ∈ PH , where v = 〈B1,q1〉〈B2,q2〉 . . .〈Bn,qn〉 ∈ N∗

H ,n≥
0, then the rule r : B → B1B2 . . .Bn ∈ PG and qB1 → qB1,qB2 → qB2, . . . ,qBn → qBn ∈ RM and
we can genereate t =4(uB1B2 . . .Bnw) such that g(t) = d.

Theorem 1 L(CFRCP) = L(CF).

Proof: By using Lemma 1, we will show the equivalence L(G,R) = L(H), where (G,R) is any
CFRCP grammar and H is a CF grammar that is constructed by Algorithm 1.

L(G,R)⊆ L(H): Let t ∈ S((G,R)4(x)),x ∈ T ∗, be any enriched derivation tree, such that g(t) =
d ∈ S(H4(y)),y = 〈B1,qB1〉〈B2,qB2〉 . . .〈Bn,qBn〉 ∈ N∗

H ,n ≥ 0, where x = B1B2 . . .Bn,n ≥ 0.
Then x ∈ L(G,R). Because for each Bi in x there exists qBi → qBi ∈ RM, where qBi ∈ FM, then
y = 〈B1,qB1〉〈B2,qB2〉 . . .〈Bn,qBn〉, qBi ∈ FM, for each i = 1 . . .n, and for each 〈Bi,qBi〉 in y there
exists ri : 〈Bi,qBi〉→ Bi ∈ PH , where Bi ∈ T . Thus, we can generate B1B2 . . .Bn ∈ L(H) and thus
L(G,R)⊆ L(H).

L(G,R)⊇ L(H): Let d′ ∈ S(H4(y)) be any derivation tree, such that y = B1B2 . . .Bn ∈ L(H). Let
d be a subtree of d′ obtained by removing all the nodes labeled by B∈ T . Because for each Bi in
y there exists 〈Bi,qBi〉→ Bi ∈ PH , where qBi ∈ FM, then f rontier(d) = 〈B1,qB1〉〈B2,qB1〉 . . .〈Bn,
where qB1〉,qBi ∈ FM, for each i = 1 . . .n, and thus there exists enriched derivation tree t such
that g(t) = d and f rontier(t) = B1B2 . . .Bn = x ∈ (G,R). Thus, L(G,R)⊇ L(H).
Thus, L(CFRCP) = L(CF).

4 CONCLUSION

As we have showed in Theorem 1, regular controlling the paths in the derivation trees of the CF
grammars does not increase the generative capacity of CF grammars. It is interesting that if
we allow the control set of such grammar to be a language of slightly higher type, a linear
language to be concrete, then the generative capacity will increase significantly and it is possible
to generate languages beyond L(CF). Moreover, it is surprising that if we allow a control set
of CF grammar to be linear language and if we require to have at least one path from derivation
tree described by a linear language, then it is still sufficient formalism to generate languages
beyond the CF class (see [2]).
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